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Regularized Auto-Encoder based
Generative Models



AE with Regularized Latent Space

x ∼ pd(x)

Eφ

z ∼ qφ(z|x)

DZ

(
qφ(z)||p(z)

)p(z) ∼ N (0, I)

Dθ

x̂ ∼ pθ(x̂|z)

Figure 1: Architectural diagram of a Regularized Auto-Encoder [1].

• The Objective - Given {xi}i=ni=1 ∼ pd(x), learn to sample from pd(x).
• pθ(x) =

∫
Z pθ(x|z)p(z) dz (Generative data distribution)

• Eϕ and Dθ - Probabilistic/Deterministic Encoder and Decoder.
• p(z) ∼ N (0, I), is the latent prior, acts as regularizer.
• Qϕ(z) =

∫
qϕ(z|x)pd(x) dx (aggregated encoded posterior
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The Objective Functions (VAE and variants):

Log-likelihood LLE(θ) of the data distribution under a model pθ(x):

LLE(θ)/DKL
[
pd(x)||pθ(x)

]
= E

pd(x)qϕ(z|x)

[
log pθ(x|z)

]
︸ ︷︷ ︸

I

−DKL(qϕ(z)||p(z))︸ ︷︷ ︸
II

− I(x; zϕ)︸ ︷︷ ︸
III

+ E
pd(x)

[
DKL(qϕ(z|x)||pθ(z|x))

]
︸ ︷︷ ︸

IV
(1)

(I+II+III) is the Evidence Lower bound ELBO(θ, ϕ) ≤ LLE(θ), ∵ DKL ≥ 0.

ELBO(θ, ϕ) = E
pd(x)qϕ(z|x)

[
log pθ(x|z)

]
− DKL(qϕ(z)||p(z))− I(x; zϕ)

= E
pd(x)qϕ(z|x)

[
log pθ(x|z)

]
− DKL(qϕ(z|x)||p(z))

(2)
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The Objective Functions (AAE/WAE)

Given the data distribution p(x) and the distribution learned by a
model pθ(x):

DWD
[
pd(x),pθ(x)

]
= infQϕ(z|x)∼Q

(
EPd EQϕ(z|x)

[
c
(
x,Dθ(z)

)])
such that Qϕ(z) = P(z)

= infQϕ(z|x)∼Q

(
E
Pd

E
Qϕ(z|x)

[
c
(
x,Dθ(z)

)]
︸ ︷︷ ︸

a

+λ · DZ
(
Qϕ(z),P(z)

)︸ ︷︷ ︸
b

)

c : X × X → R+ is any measurable cost function and DZ is any
divergence metric.
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AE-based Generative Models: Background

• All AE-based generative models optimize likelihood/divergence
metric or its lower bound.

• First term in the ELBO, approximated by MSE, is the conditional
generated data likelihood.

• Second term, DKL, acts as the regularizer on the latent space.
• Variational Auto Encoder (VAE) [1]: Assumes Gaussian Encoder
and Decoder with stochastic reparameterization.

• Adversarial Auto Encoder (AAE) and Wasserstein Auto Encoder
(WAE) [2, 3] exploits adversarial training to match the aggregated
posterior with the prior.

• Stable training, efficient sampling, flexible architectural choices
and richer/interpretable latent space, still not reached
GAN-level performance.

4



AE based generative models: Issues and remedies

• Likelihood (Term 1) and KL terms at loggerheads (Term 2).
• Distributional choices for Encoder and Decoder are restrictive.
• Aggregated latent posterior Q(z) doesn’t match with the prior.
• β-VAE [4]: Introduces a tunable parameter in the second term.
• InfoVAE/FactorVAE- Additional penalties such as mutual
information [5], total correlation [6].

• Many works [7, 8, 9, 10, 11] implement non Gaussian
distributional choices for Encoder/Decoder models.

• [12, 13, 14] uses a richer class of priors on the latent space
(GMMs, hierarchical models) to match aggregated posterior.

• [15, 16, 17] implements a post-hoc sampler in the latent space
without regularizing it.

5



Focus of the current work

• Examine two questions on the latent space of AE models:
1. What is the effect of latent space dimensionality on AE-based
generative models?

2. Whats are the ‘optimal’ latent prior for RAEs?

• Discuss two novel AE models: MaskAAE and FlexAE to address
these issues.
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Effect of the Latent Space
Dimensionality on AEs (MaskAAE)



Motivation

Figure 2: Scaled FID score for a WAE with varying latent dimensionality m for
2 synthetic datasets of ‘true’ latent dimensions, n = 8 and n = 16 and MNIST.
It is seen that the generation quality gets worse on both the sides of a
certain latent dimensionality. 7



Data Generation Hypothesis

Ψ̃ z̃ ∈ Rn

f : Rn → Rd

x ∈ Rd

Step-1: Sampling from an isotropic

continuous distribution

Step-2: Non-linear transformation to higher dimension,

d >> n

Figure 3: Depiction of the assumed two-step data generation process.
Samples drawn from a ‘true’ latent distribution Ψ̃(̃z) are passed through a
function f to obtain x.
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Assumptions on the generative function f

A1 f is L-lipschitz: ∃ some finite L ∈ R+ satisfying
||f(̃z1)− f(̃z2)|| ≤ L||̃z1 − z̃2||, ∀z̃1, z̃2 ∈ Z̃ .

A2 There does not exist f∗ : n′ → d,n′ < n satisfying A1 such that
the range of f is a subset of the range of f∗.
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Requirements for Good Generation

The goal of latent variable generative models is to minimize the
negative log-likelihood of Γ′(x, z) under Γ(x, z):

L(Γ, Γ′) = − E
x,z∼Γ

[
log(Γ′(x, z))

]
(3)

Equation 3 can be broken down as follows:

min

(
E
Γ
[− log(Γ′(x|z))]︸ ︷︷ ︸

R1

+E
Γ
[log

1
Γ′(z) ]︸ ︷︷ ︸
R2

)
(4)

R1 f(̃z) = g′(g(f(̃z))) ∀ z̃ ∈ n. This condition states that the
reconstruction error between the real and generated data
should be minimal.

R2 The Cross Entropy H(Ψ,Π) between the chosen prior Ψ, and Π

on Z is minimal.
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Conditions to Satisfy R1 and R2

The conditions required to ensure R1 and R2 are met with assumed
data generation process are:

Theorem
With the assumption of data generating hypothesis, requirements R1
and R2, can be satisfied iff assumed latent dimension m is equal to
true latent dimension n.

• For m < n, A2 will be violated since range of f ⊂ range of g′.
• For m > n, the range of ◦f will have 0 Lebesgue measure leading
to arbitrarily large H.
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The solution: MaskAAE

x

Eκ

ẑ ∼ Ψ µ� ẑ

Dψ

x̂

θ

b(·)

µ

z ∼ Π µ� z

Hζ ω

Figure 4: Block Diagram of MaskAAE. It consists of an encoder, Eκ, a decoder,
Dψ , and a discriminator Hζ as in AAE/WAE. A new layer called mask, µ is
introduced at the end of the encoder to suppress spurious latent
dimensions. The prior also gets multiplied with the same mask before going
into the Discriminator to ensure prior matching (R2).
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Experimental Results: Effect of Latent Dimension on Generation

(a) (b) (c)

Figure 5: (a) and (b) shows FID score for WAE and MAAE and active dimension
in a trained MAAE model with varying model capacity, m for synthetic dataset
of true latent dimensions, n = 8 and n = 16, mA represents the number of
unmasked latent dimensions in the trained model and (c) shows the same
plots for MNIST dataset.
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Experimental Results: Behaviour of Mask

(a) (b) (c)

Figure 6: Behaviour of mask in MAAE models with different m for the MNIST
dataset. Model capacity, m, in figure (a), (b), and (c) are 32, 64, and 110,
respectively. The active dimensions aǒter training are mA are 11, 13, and 11
respectively.
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Experimental Results: Covariance Matrix of the Latent Vectors
for MNIST

(a) (b)

Figure 7: Co-variance Matrix of (a) WAE (b) MAAE latent representation for
MNIST dataset.

15



Experimental Results: FID

Table 1: FID scores for generated images from different AE-based generative
models (Lower is better).

MNIST Fashion CIFAR-10 CelebA
VAE (cross-entr.) 16.6 43.6 106.0 53.3
VAE (fixed variance) 52.0 84.6 160.5 55.9
VAE (learned variance) 54.5 60.0 76.7 60.5
VAE + Flow 54.8 62.1 81.2 65.7
WAE-MMD 115.0 101.7 80.9 62.9
WAE-GAN 12.4 31.5 93.1 66.5
2-Stage VAE 12.6 29.3 72.9 44.4
MAAE 10.5 28.4 71.9 40.5
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Experimental Results: Normalized Absolute Correlation

Table 2: Average off-diagonal covariance NAC for both WAE and MAAE. mA

represents the number of unmasked latent dimensions in the trained model.
It is seen that MAAE has lower NAC values indicating lesser deviation of Ψ(z)
from Π(z) as compared to a WAE.

Dataset Model Capacity WAE MAAE
mA NAC mA NAC

Synthetic8 16 16 0.040 9 0.030
Synthetic16 32 32 0.031 16 0.013
MNIST 64 64 0.027 13 0.020
FMNIST 128 128 0.025 40 0.019
CIFAR-10 256 256 0.017 120 0.013
CelebA 256 256 0.046 77 0.039
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To regularize or not - Effect of
prior in AE (FlexAE)



Conditions for optimality (II)

Theorem

If m > n, then the divergence term in the WAE objective
DZ(Qϕ(z),P(z)) > 0, ∀ϕ and for any distributional divergence DZ
when pz ∼ N (0, Im×m).

Corollary

When m > n, if PZ ̸∈ Qnm then DZ
(
Qϕ(z),P(z)

)
> 0, ∀ϕ and for any

distributional divergence DZ. WAE objective has a feasible solution iff
P(z) ∈ Qnm.
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Motivation

(a) (b) (c) (d)

Figure 8: Comparison of RAEs with fixed and learnable latent priors.
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Motivation

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Visualization of data (t-SNE) and the learnt latent space of different
AE-based generative models for the synthetic data.
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Choosing the “Right” Prior: The Bias-variance Trade-off

• Question - Can we do away with the prior on latent space?
• Amortized sampling via post-hoc samplers on latent space.
• Answer: No. There exists a bias-variance trade-off in practice.
• The generalized objective:

DFlexAE(PX,Pθ) =

infϕ,θ,ψ

(
E
P(x)

E
Q(z|x)

[
c(x,Dθ(z)

]
︸ ︷︷ ︸

a

+λ · DZ(qϕ(z)||pψ(z))︸ ︷︷ ︸
b

)
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FlexAE
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Figure 10: Nature first samples a n-dimensional latent code from the true
latent space, Z̃ . Next, the latent code is mapped to a n-dimensional
manifold, X in a d-dimensional ambient space. The observed variables are
encoded using deterministic encoder, Eϕ. The m-dimensional encoded
representations lie in a n-dimensional manifold Z . The decoder network, Dθ ,
learns an inverse projection from the learnt latent space, Z to the dataspace,
X . The generator netowrk, Gψ parameterizes the learnable prior distribution.
Dimensionality of the latent space of the prior generator, m′

≥ m. The critic
network, Cκ measures the distributional divergence between Qϕ and Pψ .

22



Experimental Results: FID

Table 3: Comparison of FID scores [18] on real datasets. Lower is better.

MNIST CIFAR10 CELEBA

Rec. Gen. Rec. Gen. Rec. Gen.

VAE [1] 65.10 57.04 176.5 169.1 62.36 72.48
β-VAE [4] 7.91 24.31 43.86 83.59 30.06 50.66

VAE-Vamprior [12] 11.01 49.75 107.33 161.02 49.71 64.26
VAE-IOP [17] 8.01 32.61 92.17 141.92 41.52 57.30
WAE-GAN [3] 8.06 13.30 42.39 72.90 29.34 39.58

AE + GMM (L2) [16] 8.69 12.14 41.45 70.97 30.16 43.89
RAE + GMM (L2) [16] 6.15 7.30 40.48 69.24 29.05 35.30
VAE + FLOW [8] 8.62 20.17 43.87 73.28 36.31 42.39
InjFlowln [14] 7.40 35.96 40.11 78.78 27.93 47.70

InjFlowln + GMM [14] 7.40 9.93 40.11 68.26 27.93 40.23
2-S VAE [19] 6.38 7.41 47.03 86.15 29.38 37.85
MaskAAE [20] 8.46 10.52 58.40 71.90 35.75 40.49

FlexAE (Proposed) 4.33 4.69 39.91 62.66 20.47 24.72
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Experimental Results: Precision/Recall Scores

Table 4: Comparison of Precision/Recall scores [21] on real datasets. Higher
is better.

MNIST CIFAR10 CELEBA

VAE [1] 0.69/0.76 0.23/0.47 0.47/0.58
2S-VAE [19] 0.97/0.98 0.47/0.76 0.75/0.72

RAE + GMM (L2) [16] 0.98/0.98 0.61/0.87 0.74/0.75
MaskAAE [20] 0.94/0.96 0.58/0.83 0.59/0.68

FlexAE (Proposed) 0.99/0.99 0.68/0.85 0.89/0.88
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Experiment: Bias-Variance Trade-off

Table 5: Variation of reconstruction and generation FID scores on limited
training datasets with varying P-GEN capacity, demonstrating bias-variance
trade-off. Models (1-6) are presented in increasing order of capacity.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Rec. Gen. Rec. Gen. Rec. Gen. Rec. Gen. Rec. Gen. Rec. Gen.

MNIST 60.51 55.49 21.00 53.93 13.41 42.14 14.40 31.00 8.11 63.64 8.94 62.43
CIFAR-10 154.17 135.32 91.85 104.06 82.95 108.63 83.88 108.46 94.2 120.64 94.54 121.96
CELEBA 79.04 66.84 42.77 56.16 47.02 54.32 42.75 54.14 44.02 59.3 39.1 58.49
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Experimental Results: Reconstructed and Generated Samples

(a) (b) (c) (d)

Figure 11: (a) Visualization of reconstruction quality of FlexAE model on
randomly selected data from the test split of MNIST (first and second rows),
CIFAR-10 (third and fourth rows) and CELEBA (fiǒth and sixth rows). The odd
rows represent the real data and the even rows represent reconstructed
data. Randomly generated samples from (b) MNIST, (c) CIFAR-10, and (d)
CELEBA datasets using FlexAE model.
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Experimental Results: Attribute Manipulation Via Interpolation
in Latent Space i

(a) (b) (c) (d)

Figure 12: Interpolations in the latent space of FlexAE on CelebA. Each row in
(a) and (b) presents manipulation of the attribute “Big Nose”. The central
image of each grid in (a), and (b) is a true image from the test split without
the attribute. Whereas, the central image of each grid in (c) and (d) is a true
image from the test split with the attribute.
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Experimental Results: Attribute Manipulation Via Interpolation
in Latent Space ii

(a) (b) (c) (d)

Figure 13: Interpolations in the latent space of FlexAE on CelebA. Each row in
(a) and (b) presents manipulation of the attribute “Heavy Makeup”. The
central image of each grid in (a), and (b) is a true image from the test split
without the attribute. Whereas, the central image of each grid in (c) and (d)
is a true image from the test split with the attribute.
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Experimental Results: Attribute Manipulation Via Interpolation
in Latent Space iii

(a) (b) (c) (d)

Figure 14: Interpolations in the latent space of FlexAE on CelebA. Each row in
(a) and (b) presents manipulation of the attribute “Black Hair”. The central
image of each grid in (a), and (b) is a true image from the test split without
the attribute. Whereas, the central image of each grid in (c) and (d) is a true
image from the test split with the attribute.
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Experimental Results: Attribute Manipulation Via Interpolation
in Latent Space iv

(a) (b) (c) (d)

Figure 15: Interpolations in the latent space of FlexAE on CelebA. Each row in
(a) and (b) presents manipulation of the attribute “Smiling”. The central
image of each grid in (a), and (b) is a true image from the test split without
the attribute. Whereas, the central image of each grid in (c) and (d) is a true
image from the test split with the attribute.
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Experimental Results: Attribute Manipulation Via Interpolation
in Latent Space v

(a) (b) (c) (d)

Figure 16: Interpolations in the latent space of FlexAE on CelebA. Each row in
(a) and (b) presents manipulation of the attribute “Male”. The central image
of each grid in (a), and (b) is a true image from the test split without the
attribute. Whereas, the central image of each grid in (c) and (d) is a true
image from the test split with the attribute.
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Experimental Results: k-Nearest Training Split Neighbours of
Generated Images

Figure 17: The first entry in each row represents a randomly generated face
using FlexAE. The remaining entries in each row represents 4 nearest
neighbours (in terms of Euclidean distance) from the train split of CELEBA
dataset. 32



Conclusion

• RAEs are a powerful alternatives to GANs for generative
modeling.

• Dimensionality mismatch between the true and assumed latent
is a major concern.

• Described two methods to alleviate them.
• Next important question - Identifiability of RAEs.

33



References i

[1] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[2] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial
autoencoders,” in Proc. of ICLR, 2016.

[3] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Scholkopf, “Wasserstein
auto-encoders,” in Proc. of ICLR, 2018.

[4] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “β-VAE: Learning basic visual
concepts with a constrained variational framework,” in Proc. of
ICLR, 2017.

[5] S. Zhao, J. Song, and S. Ermon, “InfoVAE: Balancing learning and
inference in variational autoencoders,” in Proc. of AAAI, 2019.

34



References ii

[6] H. Kim and A. Mnih, “Disentangling by factorising,” in Proc. of
ICML, 2018.

[7] E. Nalisnick and P. Smyth, “Stick-breaking variational
autoencoders,” in Proc. of ICLR, 2017.

[8] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and
M. Welling, “Improved variational inference with inverse
autoregressive flow,” in Proc. of NeuRIPS, 2016.

[9] D. J. Rezende and S. Mohamed, “Variational inference with
normalizing flows,” in Proc. of ICML, 2015.

[10] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,”
in Proc. of ICML, 2016.

35



References iii

[11] M. Rosca, B. Lakshminarayanan, and S. Mohamed, “Distribution
matching in variational inference,” arXiv preprint
arXiv:1802.06847, 2018.

[12] J. M. Tomczak and M. Welling, “VAE with a vampprior,” in Proc. of
AISTATS, 2018.

[13] A. Klushyn, N. Chen, R. Kurle, B. Cseke, and P. van der Smagt,
“Learning hierarchical priors in VAEs,” in Proc. of NeuRIPS, 2019.

[14] A. Kumar, B. Poole, and K. Murphy, “Regularized autoencoders via
relaxed injective probability flow,” arXiv preprint
arXiv:2002.08927, 2020.

[15] M. Bauer and A. Mnih, “Resampled priors for variational
autoencoders,” in Proc. of AISTATS, 2019.

36



References iv

[16] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. Black, and B. Scholkopf,
“From variational to deterministic autoencoders,” in Proc. of
ICLR, 2020.

[17] H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi,
“Variational autoencoder with implicit optimal priors,” in Proc. of
AAAI, 2019.

[18] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “Gans trained by a two time-scale update rule
converge to a local nash equilibrium,” in Proc. of NeuRIPS, 2017.

[19] B. Dai and D. Wipf, “Diagnosing and enhancing vae models,” in
Proc. of ICLR, 2019.

37



References v

[20] A. K. Mondal, S. P. Chowdhury, A. Jayendran, P. Singla, H. Asnani,
and A. Prathosh, “MaskAAE: Latent space optimization for
adversarial auto-encoders,” in Proc. of UAI, 2020.

[21] M. S. M. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and S. Gelly,
“Assessing generative models via precision and recall,” in Proc.
of NeuRIPS, 2018.

38


	Regularized Auto-Encoder based Generative Models
	Effect of the Latent Space Dimensionality on AEs (MaskAAE)
	Preliminaries
	Theory
	Model
	Experimental Results

	To regularize or not to regularize - Effect of the prior on AEs (FlexAE)
	Preliminaries
	Theory
	Model
	Experimental Results


